Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the QinghaiTibetan Plateau

نویسندگان

  • S. Yi
  • N. Li
  • B. Xiang
  • X. Wang
  • B. Ye
  • A. D. McGuire
چکیده

[1] Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the QinghaiTibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of alpine grassland on Qinghai–Tibetan plateau to climate warming and permafrost degradation: a modeling perspective

Permafrost plays a critical role in soil hydrology. Thus, the degradation of permafrost under warming climate conditions may affect the alpine grassland ecosystem on the Qinghai–Tibetan Plateau. Previous space-for-time studies using plot and basin scales have reached contradictory conclusions. In this study, we applied a process-based ecosystem model (DOS-TEM) with a state-of-the-art permafrost...

متن کامل

Studying Short-Time Dynamics of Vegetation and Soil Organic Carbon in a Semi-arid Rangeland (Case Study: Zharf, Khorasan Province, Iran)

Abstract. Rangeland vegetation dynamics encompass all processes of changes in vegetation composition and structure over time. Investigating the rangeland ecosystem dynamics makes it possible to determine the effects of climatic and management conditions on qualitative and quantitative changes of the vegetation in a specific period of time. Accordingly, data collection and measurements for evalu...

متن کامل

High positive correlation between soil temperature and NDVI from 1982 to 2006 in alpine meadow of the Three-River Source Region on the Qinghai-Tibetan Plateau

Using satellite-observed Normalized Difference Vegetation Index (NDVI) data and Rotated Empirical Orthogonal Function (REOF) method, we analyzed the spatio-temporal variation of vegetation during growing seasons from May to September in the Three-River Source Region, alpine meadow in the QinghaiTibetan Plateau from 1982 to 2006. We found that NDVI in the centre and east of the region, where the...

متن کامل

Different responses of ecosystem carbon exchange to warming in three types of alpine grassland on the central Qinghai–Tibetan Plateau

Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai-Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole-year warming experiment between 2012 and 2014 using ope...

متن کامل

Effect of Different Forest Types on Soil Properties and Biodiversity of Grassland Cover and Regeneration in Central Hyrcanian

        In this study we evaluate the effects of different types on soil Physical and chemical Properties and plant species biodiversity in the hyrcanian forests of Iran. For this porpuse 33 sample plots were established in 5 vegetation types consist of pure beech (Fagus orientalis), Ash plantation (fraxinus excelsior), spruce plantation (Picea abies), mixed forest and degraded forest. In each ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013